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Abstract. Commercial biopesticides are primarily based on the bacterium Bacil-

lus Thuringiensis which produces insecticidal proteins. Dynamic models have 

been proposed to describe the production of these proteins, but their approxima-

tion can still be improved. Dynamic hybrid modelling combines kinetic models 

with data-driven algorithms which could be promising to improve the existing 

dynamic models. This work presents a dynamic hybrid model using Support Vec-

tor Machine (SVM) to predict the specific production of protein and spore by 

different strains of B. thuringiensis. The dynamic hybrid model was trained and 

validated with independent datasets of batch fermentations using the production 

rates of biomass, protein and spores computed with a kinetic model and the strain 

type as predictors. Additionally, Shapley values were calculated to determine the 

pertinence of each predictor. The Normalized root mean squared errors 

(NRMSE) revealed an improvement of the dynamic hybrid model of 12% for 

proteins and 7% for spores over the dynamic model. Although good, the model 

could be further improved by training the model with a larger quantity of data.  
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1 Introduction 

Bacillus thuringiensis is a facultative anaerobic Gram-positive sporulating bacterium, 

commonly used in the production of biopesticides [1]. Most commercial biopesticides 

are of microbial origin and are primarily based on this microorganism [2]. B. thurin-

giensis has been shown to be toxic to various organisms, such as lepidopterans, cole-

opterans, dipterans, or nematodes, but is considered safe for mammals. Thus, the prod-

ucts based on this bacterium provide effective and environmentally benign control of 

several insects in agricultural, forestry, and disease-vector applications [3].  

Its insecticidal effect is mainly due to the production of crystalline inclusions con-

sisting of multiples insecticidal proteins, known as δ-endotoxins or Cry proteins, which 

are related to the spore formation of the bacteria [1]. B. thuringiensis must experience 

certain modifications of its physiology to produce these δ-endotoxins, which makes its 

culture a challenging labor. One possibility to optimize the production of these δ-endo-

toxins is to use a model-based approach in which several simulations of mathematical 
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models are assessed. However, only a few models are available that can correctly em-

ulate the dynamics of the growth and production phases of B. thuringiensis culture [4].  

Dynamic hybrid modelling integrates both data-driven and mechanistic approaches 

and could offer a cost-effective solution for modelling complex biochemical processes 

where the underlying mechanisms are not entirely known. Although more efficient in 

utilizing data compared to purely data-driven methods, the construction of dynamic 

hybrid models still require the collection of large sets of experimental data through 

time-consuming experiments for new processes [5].  

Hybrid modelling has been applied in fermentation-related bioprocesses, to compare 

the performance of kinetic models and its hybrid counterpart, to describe the production 

of a compound of interest, as the case study of yeast astaxanthin production under un-

certainty using Gaussian processes [6]. Other algorithms used before are artificial neu-

ral network (ANN) and response surface methodology (RSM), to optimize the biohy-

drogen production by dark fermentation [7].  

In this paper, Support Vector Machine (SVM) was chosen based on its versality [8], 

the type of data available and its ability to work well with small datasets [9]. This 

method is described in section 2.    

The aim of this paper is to propose a dynamic hybrid model to represent the dynam-

ics of the fermentation of B. thuringiensis with a special focus on the products: the 

protein and the spore. The dynamic hybrid model is described in section 2, and the 

results obtained are detailed in section 3. 

2 Materials and Methods 

2.1 Organism and culture media  

Three strains of B. thuringiensis were studied: BLB1, HD1 and Lip, a Lebanese strain 

[10]. Luria broth (LB) was used for inoculum production, whereas a semi-synthetic 

medium (SSM). For the SSM, concentrated glucose (Sol 2) and all salts solutions (Sol 

3, 4, 5) were prepared and sterilized separately and added before inoculation to the rest 

of medium (Sol 1) previously sterilized. 

2.2 Experimental setup 

The model was calibrated with datasets collected from batch experiments performed at 

30 °C in a 3 L Biostat B plus fermenter (Sartorius; Germany) containing 1.8 L of the 

SSM medium. pH was regulated continuously at 6.8 using solutions of 1 M H2SO4 and 

3 M NaOH. Dissolved oxygen was continuously monitored by an optical oxygen sensor 

and maintained at 25 % of pO2-saturation with constant aeration rate (VVM = 10 with 

Qair =0.18 min·L−1) and variable stirring (from 250 to 1200 rpm). 
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2.3 Experimental data 

A dataset of 9 batches was obtained based on the experimental setup: 3 batches per 

tested strain. Each batch contains the measurements of 4 variables: biomass, substrate, 

protein and spore concentration. Table 1 presents the list of the available data by batch 

and strain.  

Table 1. Description of the experimental data.  

Strain 1 (BLB1) Strain 2 (HD1) Strain 3 (Lip) 

Batch Data per variable Batch Data per variable Batch Data per variable 

1 10 4 10 7 26 

2 10 5 7 8 8 

3 11 6 26 9 10 

 

As the hybrid model is based on a dynamic model, additional data was generated 

based on these experimental measurements to train the hybrid model. In this case, 100 

data were generated per each training batch. The distinction between training and vali-

dation batches is detailed in section 3.1.  

2.4 Dynamic model 

The dynamic model proposed by Monroy et al. [11] has been used as basis of this study. 

The model represents the mass balances for B. Thuringiensis in a batch reactor as de-

scribed in Eq. (1), (2), (3) and (4)  

 

 
𝑑𝑋

𝑑𝑡
= (µ − 𝑘𝑑) ∙ 𝑋 = 𝑟𝑋 (1) 

 
𝑑𝑆

𝑑𝑡
= −

µ ∙ 𝑋

𝑌𝑋𝑆
= 𝑟𝑆   (2) 

 
𝑑𝑃𝑟𝑜

𝑑𝑡
= 𝑋 ∙  𝑘𝑝𝑟𝑜 = 𝑟𝑝𝑟𝑜 (3) 

 
𝑑𝑆𝑝𝑜

𝑑𝑡
= 𝑋 ∙  𝑘𝑠𝑝𝑜 = 𝑟𝑠𝑝𝑜 (4) 

 

The variables described in these equations are the concentrations of biomass (𝑋), 

substrate (𝑆), protein (𝑃𝑟𝑜) and spore (𝑆𝑝𝑜), expressed in g.L-1. The parameter 𝑌𝑋𝑆 

denotes the yield coefficient between biomass and substrate in gX.gS-1. The biomass 

growth rate is represented by µ and its decay constant as 𝑘𝑑, both in h-1. In this particular 

case, the Contois expression was used to calculate the biomass growth rate, as given in 

Eq. (5).  

 µ =
µ𝑚𝑎𝑥 ∙ 𝑆

(𝐾𝑐 ∙  𝑋) + 𝑆
  (5) 
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The term µ
max

 is the maximal growth rate and 𝐾𝑐 is the Contois specific constant. 

The parameter 𝑘𝑝𝑟𝑜 is the specific kinetic constant for protein (gPro.gX-1.h-1) and 

𝑘𝑠𝑝𝑜 is the specific kinetic constant for spores (CFUx10-5.gX-1.h-1). The mass balances 

in Eq. (3) and (4) correspond to the production rates for protein (𝑟𝑝𝑟𝑜) and spore (𝑟𝑠𝑝𝑜).  

2.5 Dynamic Hybrid Model 

In this work, protein and spores were modelled by a data-driven approach. Therefore, 

two new equations were included in the model as follows, 

 
𝑑𝑃𝑟𝑜

𝑑𝑡
= 𝑟𝑝𝑟𝑜

∗  (6) 

 
𝑑𝑆𝑝𝑜

𝑑𝑡
= 𝑟𝑠𝑝𝑜

∗  (7) 

where 𝑟𝑝𝑟𝑜
∗  and 𝑟𝑠𝑝𝑜

∗  are calculated as the derivative of a sigmoidal function that de-

scribes the proteins and spore concentrations, respectively.  

These output variables were modelled using a Support Vector Machine (SVM) ap-

proach. SVM is a non-parametric and non-linear technique, which has attracted great 

attention in recent years due to its stability, robustness, and generality, especially for 

the cases involving high-dimensional regression or classification analysis [12].  

In this work, SVM is used to predict accurately the desired output 𝑦 through Eq. (8).  

 𝑦 = 𝑤𝑇𝜑(𝑥) + 𝑏 (8) 

where φ(x) is the nonlinear mapping of the input x into a high dimensional feature 

space. The determination of this equation is based on an optimization problem, which 

aims to find parameters that improve the efficiency of the 𝑦 estimation [13]. This is 

achieved by using a Kernel function, which can be linear, quadratic, cubic and Gauss-

ian, according to the mapping of the data. 

  SVM has been used to design soft sensors to produce protein on the same process 

by B. thuringiensis where variables as pO2, agitation and strain number were catego-

rized as the most important features/variables to describe protein production [14].   

In this case, a model for 𝑟𝑝𝑟𝑜
∗  was defined based on five predictors: B. thuringiensis 

strain type used in the experiment (𝑠𝑡𝑟𝑎𝑖𝑛), the biomass growth rate (µ) from Eq. (5), 

and the consumption/production rates. This last three were calculated from the dynamic 

model, Eq.  (2) to (4) (𝑟𝑆, 𝑟𝑝𝑟𝑜, 𝑟𝑠𝑝𝑜). The SVM model can be expressed as a function 

of the form: 

 𝑟𝑝𝑟𝑜
∗  = 𝑓(𝑠𝑡𝑟𝑎𝑖𝑛, µ, 𝑟𝑆, 𝑟𝑝𝑟𝑜, 𝑟𝑠𝑝𝑜) (9) 

For the 𝑟𝑠𝑝𝑜
∗  model, 𝑟𝑝𝑟𝑜

∗  is included in the predictors to increase accuracy.  

 𝑟𝑠𝑝𝑜
∗  = 𝑓(𝑠𝑡𝑟𝑎𝑖𝑛, µ, , 𝑟𝑆, 𝑟𝑝𝑟𝑜, 𝑟𝑠𝑝𝑜 , 𝑟𝑝𝑟𝑜

∗ ) (10) 
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The variable 𝑠𝑡𝑟𝑎𝑖𝑛 was defined as an integer from 1 to 3, assigned as 1: BLB1, 2: 

HD1 and 3: Lip respectively.  

Experimental data were filtered and smoothed so that the numerical derivative of 

protein and spore of the experimental data could have a similar behavior to the produc-

tion rates calculated with the dynamic model. Using this filtered data, the model could 

be trained to follow the expected evolution of the products. For instance, to avoid de-

creases in product concentration and any experimental disturbances. The filtered data 

is presented in the Results section.  

3 Results 

3.1 Training tests 

The model was trained using experimental data from nine batch essays described in 

section 2.3. Six out of these datasets were used for model training (two per each strain) 

and the remaining three datasets (Batch No. 3, 6 and 9) were used for model validation 

(one for each strain of B. thuringiensis). The batches for training were selected based 

on the values obtained for 𝑟𝑝𝑟𝑜
∗  and 𝑟𝑠𝑝𝑜

∗  in order to have the validation sets inside the 

range of the training sets. 

SVM modelling was performed using the Regression Learner tool from 

Matlab2020a. The hybrid model was integrated and solved in Matlab2020a.  

 

Fig. 1. Training tests for protein and spore concentration with strain 1. 

The results presented in Fig. 1 depict the performance of the dynamic and hybrid 

model for protein and spore production in comparison to the experimental and filtered 

data from 3 batches using strain 1. The dynamic hybrid model presents a similar be-

havior than the dynamic model for protein concentration, while there is an improvement 

in the spore concentration, where the hybrid model fits better the experimental data.  
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Fig. 2. Training tests for protein and spore concentration with strain 2.  

 Fig. 2 shows that the dynamic hybrid model is better at describing protein pro-

duction than the dynamic model, but the opposite is observed for the spore in batch 4. 

These variations can be explained by the wide range of values that a product concen-

tration can take at the same conditions for the same strain and the fact that there is a 

trade-off between the simulation of both batches.  

Fig. 3 shows that both models follow the dynamics for proteins. The hybrid model 

fits better for spores when experimental data has higher values and starts in a low con-

centration point (Fig.3 Batch 8).  

 

Fig. 3. Training tests for protein and spore concentration with Strain 3.  
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3.2 Validation tests 

The batches with higher uncertainty on protein and spore concentrations were used for 

model validation. For this reason, significant differences are observed between models 

and data in Fig.4.  

 

Fig. 4. Validation tests for Protein production. (Batch 3: strain 1, Batch 6: strain 2, Batch 9: 

strain 3). 

There are some improvements in the prediction of protein production for the case of 

strain 1, depicted in Fig. 4 Batch 3. In the case of the spores, the differences are noto-

rious, but the hybrid model is more likely to consider drastic changes in spore concen-

tration because it takes information from its production rate, so it has an important ad-

vantage over the dynamic model.  

 

The Normalized Root Mean Square Error (NRMSE) was calculated for each test to 

assess the overall performance of the models in both the training and validation stages. 

A distinction is made regarding the evaluation on the experimental and the filtered data. 

The values of NRMSE are presented in Table 2.  
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Table 2. NRSME comparison.  

Variable Data classification Experimental data Dynamic model Hybrid model 

Protein 

Training 
Original 0.4231 0.0691 

Filtered 0.4156 0.0540 

Validation 
Original 0.4637 0.4049 

Filtered 0.4713 0.4144 

Spore 

Training  
Original 0.4373 0.1143 

Filtered 0.4340 0.1065 

Validation 
Original 0.3067 0.2879 

Filtered 0.3514 0.3262 

 

The NRMSE shows that the dynamic hybrid model has better accuracy than the dy-

namic model in all tests, but more importantly, in the validation tests. 

3.3 Shapley values 

To consider the influence of each predictor in the models, a Shapley values evaluation 

was performed over both models. This indicator represents the deviation of the Shapley 

values, taking the mean as a reference. Therefore, the predictors with a higher deviation 

will be more determinants to the model.  

 

  
(a) (b) 

Fig. 5. Shapley importance plots for protein production rate (a) and spore production rate (b) 

model.  

In Fig. 5.a, it is observed that the influence of the dynamic model predictors is very 

high, being the protein production rate the main predictor in the protein model, as ex-

pected. Nevertheless, in Fig. 5.b the output of the protein model has a significant impact 

over the accuracy of the spore rate model. The spore rate from the dynamic model is in 

third place, but its deviation score is not considerably high compared to the previous 

places. As the deviations from the mean value are not significant, no predictor can be 

neglected in the computing of both models.  
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4 Conclusion 

A dynamic hybrid model was proposed to describe biopesticides production produced 

by three different strains of B. Thuringiensis. This model was able to fit protein and 

spore production. The dynamic hybrid model was compared against a dynamic kinetic 

model. The dynamic hybrid model has shown better performance than the kinetic dy-

namic model for the proteins production but for spores there is a gap in some data sets. 

The NRMSE values for the dynamic hybrid model present an improvement of 12% for 

proteins and 7% for spores over the dynamic model. The analysis of Shapley values 

shows all predictors are necessary for both models. This approach will be applied with 

different kinds of substrates as raw material in future works.   
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